Ozone, or O3, also called “activated oxygen,” is a highly reactive gas naturally produced in the atmosphere by the photochemical reaction of solar ultraviolet light radiation and oxygen (O2), or by lightning (bio-electrical reaction). At ground level, ozone is produced through the interaction of nitrogen oxides and volatile organic compounds (VOCs), and from ODS (Ozone Depleting Substances), including aerosol propellants, coolants, foaming agents, fire extinguishers, chemical solvents and pesticides.
The atmospheric ozone layer spans an area from six to thirty miles above the earth, helping to reduce harmful UV radiation at the earth’s surface. O2, two atoms of oxygen, is part of the air we breath. By adding a third atom (O1 + O1 + O1 = O3), ozone (O3) is created.
Ozone can be made synthetically through the reaction of O2 with either an electrically charged wire (electro-chemical corona discharge) or ultraviolet light source (photochemical), creating O3. Synthetically produced ozone is effective as an air and water purifier, odor killer and disinfectant.
Ozone is highly reactive, and when it is close to the earth and near people it can be a health hazard, which is why Health Canada has issued a warning that air purifiers that emit higher than acceptable levels of ozone can cause lung irritation. Ozone can damage the cells that line the bronchial airways, increasing the risk of respiratory infection and inflammation, asthma, emphysema and bronchitis. While ozone is an effective air and water disinfectant, high concentrations are harmful to living tissues. Many air purifiers that produce negative ions emit ozone.While ozone can be dangerous to living tissue, when used properly it is a powerful cleaner, disinfectant, and bleaching agent.
Ozone is the strongest oxidant available for the disinfection of air and water. Ozone is used to purify a high percentage of the world’s drinking water, including bottled and municipal water. Ozone acts over 3000 times faster than chlorine, killing 99% of waterborne bacteria, germs, viruses and most pesticides by rupturing the cells of micro-organisms, or destroying odors and chemicals by oxidation. Ozone has a fairly short life of about 20 minutes, naturally changing back to O2.
Moderately soluble in water, ozone works by two modes of action; direct oxidation and oxidation by hydroxyl radicals. These oxidation reactions result in complete sterilization and deodorization with the only residual being dissolved oxygen.
While the use of ozone for most drinking water systems is unnecessary and impractical due to municipal chlorination, I recommend this method of sterilization for water that is microbiologically unsafe to drink, as an alternative to UV-C sterilization. There are also new inexpensive ozone producing systems designed to kill micro-organisms and remove toxins from food, which would be the preferred method of ensuring the safety of your meats, fish, fruits and vegetables.